A common fixed point theorem in non-Archimedean menger PM-spaces
نویسندگان
چکیده
منابع مشابه
Common Fixed Point Theorems in Non-Archimedean Menger PM-Spaces
M. Alamgir Khan Department of Mathematics, Eritrea Institute of Technology Asmara, Eritrea (N. E. Africa) [email protected] Abstract. The aim of this paper is to prove a related common fixed point theorem for four mappings in two complete non-Archimedean Menger PM-spaces which extends and generalizes the result of Fisher [1, 2] , Jain et al. [4] , Nesic [5] and Popa [6]. Mathematics Subject Cl...
متن کاملFixed Point Theorem For Four Weakly Compatible Mappings in Non Archimedean Menger PM-Spaces
In the present paper we prove a unique common fixed point theorem for four weakly compatible self maps in non Archimedean Menger Probabilistic Metric spaces without using the notion of continuity. Our result generalizes and extends the results of Amit Singh, R.C. Dimri and Sandeep Bhatt [A common fixed point theorem for weakly compatible mappings in non-Archimedean Menger PM-space, MATEMATIQKI ...
متن کاملSome Common Fixed Point Theorems in Menger PM Spaces
Employing the common property E.A , we prove some common fixed point theorems for weakly compatible mappings via an implicit relation in Menger PM spaces. Some results on similar lines satisfying quasicontraction condition as well as ψ-type contraction condition are also proved in Menger PM spaces. Our results substantially improve the corresponding theorems contained in Branciari, 2002 ; Rhoad...
متن کاملFixed Point Theorems Using Reciprocal Continuity in 2 Non Archimedean Menger PM-Spaces
The intent of this paper is to establish a common fixed point theorem by using a new continuity condition in 2 Non-Archimedean Menger PM-space.This gives an alternative answer of the problem of Rhoades [6].Our result extends, generalizes and unifies several fixed point theorems on metric spaces, Menger probablistic-metric spaces and fuzzy metric spaces. Mathematics Subject Classification: 47H10...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2009
ISSN: 2391-4661
DOI: 10.1515/dema-2013-0199